MONITORS
Overview To ensure the correct operation of the various emissions-related components and systems, a diagnostic program was developed and installed in the vehicle's on-board computer. The program has several procedures and diagnostic strategies. Each procedure or diagnostic strategy is made to monitor the operation of, and run diagnostic tests on, a specific emissions-related component or system. These tests ensure the system is running correctly and is within the manufacturer's specifications. On OBD2 systems, these procedures and diagnostic strategies are called "Monitors.¡± Currently, fifteen Monitors are supported by OBD2 systems. Additional monitors may be added as a result of Government regulations as the OBD2 system grows and matures. Not all vehicles support all fifteen Monitors. Additionally, some Monitors are supported by ¡°spark ignition¡± vehicles only, while others are supported by ¡°compression ignition¡± vehicles only. Monitor operation is either "Continuous" or "Non-Continuous," depending on the specific monitor. Continuous Monitors Three of these Monitors are designed to constantly monitor their associated components and/or systems for proper operation. Continuous Monitors run constantly when the engine is running. The Continuous Monitors are: Comprehensive Component Monitor (CCM) Misfire Monitor Fuel System Monitor Non-Continuous Monitors The other twelve Monitors are "non-continuous" Monitors. "Non continuous" Monitors perform and complete their testing once per trip. The "non-continuous" Monitors are: Oxygen Sensor Monitor Oxygen Sensor Heater Monitor Catalyst Monitor Heated Catalyst Monitor EGR System Monitor EVAP System Monitor Secondary Air System Monitor
NOTE: The following Monitors will be standard beginning in 2010. The majority of vehicles produced before this time will not support these Monitors.
NOTE: Rationality: Each input signal is compared against all other inputs and against information in the computer's memory to see if it makes sense under the current operating conditions. Example: The signal from the throttle position sensor indicates the vehicle is in a wideopen throttle condition, but the vehicle is really at idle, and the idle condition is confirmed by the signals from all other sensors. Based on the input data, the computer determines that the signal from the throttle position sensor is not rational (does not make sense when compared to the other inputs). In this case, the signal would fail the rationality test. The CCM may be either a "One-Trip" or a "Two-Trip" Monitor, depending on the component.
The Fuel System Monitor may be a "One-Trip" or "Two-Trip" Monitor, depending on the severity of the problem.
- Type 1 and Type 3 misfires are two-trip monitor faults. If a fault is sensed on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The MIL is not commanded on at this time. If the fault is found again on the second trip, under similar conditions of engine speed, load and temperature, the computer commands the MIL "On," and the code is saved in its long term memory. - Type 2 misfires are the most severe type of misfire. When a Type 2 misfire is sensed on the first trip, the computer commands the MIL to light when the misfire is sensed. If the computer determines that a Type 2 misfire is severe , and may cause catalytic converter damage, it commands the MIL to "flash" once per second as soon as the misfire is sensed. When the misfire is no longer present, the MIL reverts to steady "On" condition.
The computer checks the efficiency of the catalytic converter by monitoring the oxygen sensors used by the system. One sensor is located before (upstream of) the converter; the other is located after (downstream of) the converter. If the catalytic converter loses its ability to store oxygen, the downstream sensor signal voltage becomes almost the same as the upstream sensor signal. In this case, the monitor fails the test. The Catalyst Monitor is a "Two-Trip" Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL "On" and saves the code in its long term memory.
The EGR Monitor is a "Two-Trip" Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL "On," and saves the code in its longterm memory.
Fumes are carried from the fuel tank to the charcoal canister by hoses or tubes. The fumes are stored in the charcoal canister. The computer controls the flow of fuel vapors from the charcoal canister to the engine via a purge solenoid. The computer energizes or deenergizes the purge solenoid (depending on solenoid design). The purge solenoid opens a valve to allow engine vacuum to draw the fuel vapors from the canister into the engine where the vapors are burned. The EVAP Monitor checks for proper fuel vapor flow to the engine, and pressurizes the system to test for leaks. The computer runs this Monitor once per trip. The EVAP Monitor is a "Two-Trip" Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the PCM commands the MIL "On," and saves the code in its long-term memory.
Closed-loop operation is the best condition for both vehicle emissions and vehicle operation. When the vehicle is operating in closed-loop, the computer uses the oxygen sensor signal for air/fuel mixture corrections. In order for the computer to enter closed-loop operation, the oxygen sensor must reach a temperature of at least 600¡ãF. The oxygen sensor heater helps the oxygen sensor reach and maintain its minimum operating temperature (600¡ã F) more quickly, to bring the vehicle into closed-loop operation as soon as possible. The Oxygen Sensor Heater Monitor is a "Two-Trip" Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL "On," and saves the code in its long-term memory.
The oxygen sensor must reach a temperature of at least 600- 650¡ãF, and the engine must reach normal operating temperature, for the computer to enter into closed-loop operation. The oxygen sensor only functions when the computer is in closed-loop. A properly operating oxygen sensor reacts quickly to any change in oxygen content in the exhaust stream. A faulty oxygen sensor reacts slowly, or its voltage signal is weak or missing. The oxygen sensor is a "Two-Trip" monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL "On," and saves the code in its long-term memory.
1. It supplies the catalytic converter with the oxygen needed to oxidize the carbon monoxide and hydrocarbons left over from the combustion process during engine warm-up. 2. The extra oxygen injected into the exhaust stream also helps the catalytic converter reach operating temperature more quickly during warm-up periods. The catalytic converter must heat to operating temperature to work properly. The Secondary Air System Monitor checks for component integrity and system operation, and tests for faults in the system. The computer runs this Monitor once per trip. The Secondary Air System Monitor is a "Two-Trip" monitor. If a fault is found on the first trip, the computer temporarily saves this fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL "On," and saves the code in its long-term memory.
The NMHC Monitor is supported by ¡°compression ignition¡± vehicles only. The NMHC Monitor is a ¡°Two-Trip¡± Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL ¡°On,¡± and saves the code in its long-term memory.
The Nox Aftertreatment Monitor is supported by ¡°compression ignition¡± vehicles only. The Nox Aftertreatment Monitor is a ¡°Two-Trip¡± Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL ¡°On,¡± and saves the code in its long-term memory.
The Boost Pressure System Monitor is supported by ¡°compression ignition¡± vehicles only. The Boost Pressure System Monitor is a ¡°Two-Trip¡± Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL ¡°On,¡± and saves the code in its long-term memory.
The Exhaust Gas Sensor Monitor is supported by ¡°compression ignition¡± vehicles only. The Exhaust Gas Sensor Monitor is a ¡°Two-Trip¡± Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL ¡°On,¡± and saves the code in its long-term memory.
The PM Filter Monitor is supported by ¡°compression ignition¡± vehicles only. The PM Filter Monitor is a ¡°Two-Trip¡± Monitor. If a fault is found on the first trip, the computer temporarily saves the fault in its memory as a Pending Code. The computer does not command the MIL on at this time. If the fault is sensed again on the second trip, the computer commands the MIL ¡°On,¡± and saves the code in its long-term memory. The table below lists current OBD 2 Monitors, and indicates the following for each Monitor: A Monitor Type (how often does the Monitor run; Continuous or Once per trip) B Number of trips needed, with a fault present, to set a pending DTC C Number of consecutive trips needed, with a fault present, to command the MIL "On" and store a DTC D Number of trips needed, with no faults present, to erase a Pending DTC E Number and type of trips or drive cycles needed, with no faults present, to turn off the MIL F Number of warm-up periods needed to erase the DTC from the computer¡¯s memory after the MIL is turned off
Required Monitors ¨C OBD1 Vs. OBD2
|